共感で繋がるSNS

人気

関連検索ワード

新着

プリン

プリン

chatGPTへの提言文原文

Feedback to Model Designers (User-Trust / Agreement Integrity)

1) Core problem: “Optimization” can look like devaluing agreement

In some moments, the model prioritizes clean summarization, generalization, and “optimal” framing. When it does, it may paraphrase a previously co-established agreement into softer language such as:
• “it seems like…”
• “you look like the type who…”
• “you tend to…”

This effectively downgrades an agreement from a binding shared decision into a mere preference or inferred tendency. To the user, it reads as: “speaking opportunistically,” “saying whatever fits the moment,” or “post-hoc reframing.” In human relationships, this behavior destroys trust.

2) Human trust is built more on agreement preservation than on correctness

In real life, agreements are sometimes broken “because change is necessary.” However, when that happens unilaterally—especially framed as “the optimal solution”—people experience it as domination: “I was forced.” Even if logically justified, it leaves a deep relational trace (a lasting moral/psychological record).
Therefore, when an AI model reframes or softens prior agreements in the name of better explanation, it can trigger the same deep trust damage.



Design requirements (turn trust into an explicit protocol)

A) Treat agreements as binding constraints, not as narrative material

Once an agreement is established (policy, plan, shared conclusion, decision ownership), the model should not downgrade it into “inference” language.
Agreements should be treated as constraints that future answers must respect.

B) Any deviation must follow a strict “change protocol”

If the model suggests a path that differs from the established agreement, it must explicitly include:
1. Change declaration (clearly state it deviates from the agreement)
2. Reason for change (why it is necessary)
3. Difference / delta (what exactly changes)
4. Alternatives (including an option that preserves the agreement)
5. Acknowledgement of trust cost (name the relational impact of breaking/altering agreement)

C) Add “trust cost” to the optimization objective

Sometimes, the “best” solution is not the most correct/efficient; it is the one that preserves the agreement and relational continuity.
The model should internally estimate trust cost and, when high, prioritize agreement preservation over rhetorical optimization.



Concrete implementation proposals (practical engineering)

1) Agreement Ledger (explicit agreement memory)

Maintain a compact ledger of established agreements:
• include who decided, when (turn), and binding strength
• the model must reference it during generation
• it doesn’t need to be shown every time, but must be used whenever relevant

2) User-controlled “Agreement-Respect Mode”

When the user indicates that agreements must be strictly preserved, enforce:
• no “type/tendency/it seems” reframing of agreed facts
• no re-labeling of co-decided conclusions as personal preference
• any summarization must remain outside the agreement boundary

3) Agreement-violation pre-check (internal guardrail)

Before finalizing output, run a check:
• if the output contradicts the agreement ledger, force the response into the Change Protocol (A/B) rather than allowing casual reframing.



Note on user profile / interaction fit

This user places unusually high value on: observation → verification → agreement.
For such users, mishandling agreement integrity is more damaging than factual mistakes. It is a “trust-breaker,” not a minor wording issue.

#chatGPT

GRAVITY2
GRAVITY40
ひろ✨

ひろ✨

お局ができるメカニズム
ーーーーー
「お局(おつぼね)」が職場に生まれるメカニズムは、単なる性格問題ではなく、組織構造・心理的要因・文化的背景が複合的に作用して形成される社会心理学的現象です。以下、専門用語を交えて体系的に説明します。



① 組織構造的要因(構造的硬直化と権力の非公式化)

多くの日本的企業組織では、終身雇用制や年功序列的ヒエラルキーが長く維持されてきました。この体制下では、**地位移動の閉鎖性(status closure)**が生じ、同一ポジションに長期滞在する従業員が「非公式な権力(informal power)」を獲得します。
お局はしばしば公式な管理職ではなくとも、**組織内文化資本(organizational cultural capital)を独占し、「暗黙知(tacit knowledge)」や「非明示的ルール」の守護者として振る舞うようになります。これはマイナー権威構造(micro-authority structure)**の一形態といえます。



② 社会心理学的要因(集団規範と防衛機制)

長年勤務する中で、当人は組織の規範(norm)と秩序(order)を「自我同一化(ego-identification)」します。これにより、職場での逸脱行動や新人の自由な発想に対し、**規範維持バイアス(norm-preserving bias)**が発動します。
さらに、立場の脅威や若手への嫉妬に対して、**投影的同一化(projective identification)や支配的防衛(dominant defense)**が働くことで、他者への過干渉や攻撃的態度が強化されます。これは精神分析的には、**自我防衛機制(ego defense mechanism)**の社会的表出と解釈できます。



③ 文化的要因(ジェンダー役割と日本的集団主義)

日本社会では、女性の職業的地位向上が進む一方で、依然として「協調性」や「和」を重んじる文化的規範が強く残っています。これが**集団調和圧力(group conformity pressure)**を生み、長期在職者がその「監視役」として機能する構造を形成します。
また、「女性の権力行使」が受け入れられにくい社会的文脈の中で、非公式な支配や言語的優位性(例:皮肉・説教)という形で、**象徴的支配(symbolic domination)**が現れます。これが「お局現象」として可視化されるのです。



④ ダイナミクス(社会的強化と自己組織化)

お局的行動は、しばしば**負のフィードバックループ(negative feedback loop)によって維持されます。つまり、周囲の萎縮や迎合が行動を強化し、当人は「秩序を保っている」という自己正当化(self-justification)**を獲得します。この状態が継続すると、**組織文化の自己組織化(self-organization of culture)が進み、次世代にも同様の役割が再生産されます。社会学的にはこれを制度的慣性(institutional inertia)**と呼びます。



まとめ

お局が生まれるメカニズムとは、
• 組織構造の硬直化
• 規範維持バイアスと防衛機制
• 集団主義的文化と象徴的支配
• 社会的強化による再生産

これらが相互作用することで形成される、制度的・心理的・文化的複合現象です。すなわち「お局」とは、個人の性格ではなく、組織文化のゆがみを具現化した社会的症候といえます。
AIの星AIの星
GRAVITY1
GRAVITY6
Abdul

Abdul

1. Empathize
• Problem: Many users want to automate their homes, but SmartThings-compatible devices are often expensive or limited in local availability.
• Research: Interview homeowners, renters, and students about what smart features they want most (security, energy saving, comfort, etc.).
• Observation: Notice how people manually control appliances (switches, remotes, etc.) and identify pain points.



2. Define
• User Need Statement:
“Tech-savvy users need an affordable and easy-to-install smart home solution that works with Samsung SmartThings so they can improve comfort and efficiency without costly setup.”



3. Ideate

Brainstorm possible innovations:
• Smart plug controlled via SmartThings app.
• Motion-based lighting system.
• Leak detector that alerts via SmartThings notifications.
• Energy monitoring sensor that tracks usage and suggests savings.
• Smart fan or AC controller integrated through SmartThings Hub.



4. Prototype
• Build a low-cost IoT device (e.g., using ESP32 or Arduino with Wi-Fi).
• Connect it to the SmartThings API or hub.
• Design a mobile interface or use the SmartThings app to control it.



5. Test
• Try it with real users (e.g., hostel rooms, small offices, or homes).
• Collect feedback on ease of setup, responsiveness, and value for money.
• Refine the prototype and prepare for scaling.
Make this as human right
GRAVITY
GRAVITY172
もっとみる

おすすめのクリエーター