共感で繋がるSNS
投稿
菊池
2025/06/22
局所環(A,m)でm/m^2のA/m上の次元を知りたいとき、代数多様体ならヤコビ行列のランクから計算できるけど、それ以外のケースは愚直に生成元の線型独立性を確かめるくらいしか方法はないのだろうか。
1
話題の投稿をみつける
Shin.go (
2025/10/13
順当ってところかな
2
くらー
2025/10/13
もしかしてヤエノムテキってお顔自体はめちゃくちゃかわいい系なのでは……?
5
つかさ@
2025/10/13
森さん、戻って来んかったなあ。この悔しさを来年晴らしてくれ
7
りんね
2025/10/13
友貴哉さいこ〜
4
ツーま
2025/10/13
ほんと良くできてる
#まどかマギカ
4
ろりあ
2025/10/13
日ハムに負けると本当にムカつきますねぇ!元関西パシフィックの馴染みでソフトバンクホークス応援しますねぇ!
6
ソラソ
2025/10/13
はむほーーーーッ‼️
1
まち
2025/10/13
すごい。外が紫…というか藤色……
8
たらお@
2025/10/13
怖いという感覚が良いですね
#まどかマギカ
3
ざくろ
2025/10/13
長袖着て出かけたら結構暑かった( ;˘ω˘ ;;」 ∠):_
8
もっとみる
関連検索ワード
元彼
元カノ
元カレ
元気です
元旦那
元々
元夫
元気いっぱい
元ネタ
元凶
局所環(A,m)でm/m^2のA/m上の次元を知りたいとき、代数多様体ならヤコビ行列のランクから計算できるけど、それ以外のケースは愚直に生成元の線型独立性を確かめるくらいしか方法はないのだろうか。